

Chapter 3
Forensic
Laboratory
Techniques

Objective: You will be able to describe the theory of chromatography.

- Read the Laci Peterson case on p. 70
- Compile a list in your notebook of evidence that was found.

Introduction

- Physical properties are properties that can be measured without changing the identity of the evidence
- Chemical properties determine how a substance behaves in the presence of other substances.

Presumptive & Confirmatory Tests

- Presumptive tests allow for a preliminary identification.
 - Saliva
 - Semen
 - Blood
 - Urine
- Confirmatory tests are used to make a more specific identification.

Analyzing Organic Compounds

- Quality versus quantity
 - Quality identifies exactly what it is
 - Quantity may be important because larger amounts of illegal substances may carry longer jail time

- Many times substances are in fact <u>mixtures</u>
 - For example; drugs may have been "cut"
 - This requires a different technique to identify the substance

Chromatography

- This technique has the ability to purify substances
 - It rips each component from mixture and separates them into single components

Known

Known Heroin Known Methamphtamine

Unknown From Case

Chromatography

- Theory of chromatography
 - Chemical substances partially escape into surroundings when:
 - · Dissolved in a liquid
 - Absorbed into a solid

Dissolved in liquid

Gas chromatography

Dissolved on a solid

TLC

Thin Layer Chromatography (TLC)

- Separation of mixture is done by using a stationary solid phase (paper) and moving liquid phase
- Still based on solubility of each substance in the liquid
- Substances that are highly soluble move faster
- Must run unknown sample alongside knowns

Known

Known Heroin Known Methamphtamine

Unknown From Case

Chromatography—Paper

Chromatogram—R_f value

R_f = Distance substance traveled
Distance solvent traveled

Figure 3-8. Chromatogram used for calculating R_f .

Objective: You will be able to describe how gas chromatography separates substance from a mixture.

Do Now:

- Take out your lab from Friday
- Finish calculating R_F values

Dissolved in liquid

Gas chromatography

Dissolved on a solid

TLC

Gas Chromatography

An Analogy for

Chromatographic Separation

mixed swarm of bees & hornets enter flower bed...

bees visit flowers; hornets don't...

hornets leave the bed first.

Gas Chromatography

- Can separate substances because of differences in solubility in a liquid
 - Force air to continuously move in one direction
 - Gas phase is moving phase, liquid phase is stationary phase

The chemical race

- High solubility means it wants to stay in liquid
- This makes the highly soluble substance move <u>slower</u>

Components of a Gas Chromatograph

Mixture of material in marijuana

Caylee Anthony Case

Key moments in the Caylee Anthony case

Objective: You will be able to explain how spectrometers can be used to specifically identify a substance.

Do Now:

Take out the ink lab and pass it forward

Mass Spectrometer

- As the gas leaves the GC, it enters the MS
- Within the MS, a beam of electrons is shot at the substance breaking it down into fragments
- These fragments pass through an electric field which separates them by their masses
- The fragment masses are then recorded on a graph
- Each substance breaks down into its own characteristic pattern

MASS

MS of Caffeine

Microscopy— **Compound Light Microscope**

- Magnification between 40x to 1000x
- Specimens need to be translucent
- View hair, fibers, and cells

Figure 3-4. The image on the left has been magnified $40 \times$. The image on the right has been magnified $100 \times$.

Microscopy—Stereomicroscope

- Sometimes called a dissecting microscope
- Amounts to being a powerful magnifying glass
 - Can view opaque objects
- Inspect insect larvae, paint chips, and other small items

Microscopy— Comparison Microscope

- Two microscopes connected to one eyepiece
- Two samples are visible side by side
- Useful for comparing bullet striations, fibers, and hair

Figure 3-6. Images of two bullet casings as seen through a comparison microscope. One casing was found at the crime scene. The other was taken from the suspect's gun.